If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-25=55
We move all terms to the left:
n^2-25-(55)=0
We add all the numbers together, and all the variables
n^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| X+-10+4x+2x+5=180 | | 0.6x+8=3x+2 | | 8+n=30 | | 135x=20x | | v^2+29=0 | | -3x+7=-4x+6 | | 2x-3=5.2+3 | | 5x(180-x)=90 | | -3x=7=-4x=6 | | 98=t-105 | | (1+u)(5u+-8)=0 | | 6v+9=8v-11 | | 3/5x-4+8=13 | | -(-3r-3)=3r+3(-8r+1) | | 3.x+4=8x-21 | | -x-2-2x=-3x-4 | | 4x+15=3. | | 3+5m=1+7m | | -5(5x+8)+1=-39-2x | | -2(3-7x)=-3(7-3x) | | 32x+8=4(x+9) | | m-1/2=1 | | -5x+2(-x+7)=-7x+14 | | -5(x-3)+2=-7(x-3) | | 3(m+22)=4(m+12 | | 4a+5=3a+8 | | -7+6x=-7(1-5x) | | 2(2x-3)=6x-14 | | -9+2x=2x-5-4 | | -8x+12=-3x+42 | | x-13=≤2 | | 6.2x-3.1=6.2x-3.1 |